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Multiphoton absorption of femtosecond laser pulses focused through an objective with high
numerical aperture (NA) can be used to image and manipulate cellular and intracellular objects.
This review highlights recent advances in intracellular manipulation, including nanosurgery and
labeling in living cells with femtosecond lasers.
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1. Introduction

Lasers have been used for imaging as well as for
manipulating cellular structures in living cells non-
invasively. Since the advent of femtosecond lasers,
multiphoton microscopy has become an important
tool for the observation of sub-cellular structures.1

Focusing of intense femtosecond laser pulses allows
manipulation of cellular and intracellular structures
to be carried out.2 Femtosecond laser manipulation
techniques offer attractive advantages, including
high-resolution in 3-dimension, reduced photon-
induced damage, and deep penetration into thick

samples because they are based on multiphoton
process. In this review, we report on state-of-the-
art technology of intracellular manipulation with
femtosecond lasers by highlighting selective label-
ing and surgery for intracellular structures.

2. Femtosecond Laser Nanosurgery

An intense focused continuous wave (CW) or long-
pulse laser beam in ultraviolet (UV) and visible
region has been used for selective targeting of cellu-
lar and intracellular structures.3–7 Surgery in plant
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and animal cells was demonstrated with sub-micron
spatial resolution by laser-induced plasma forma-
tion. Ultraviolet lasers have some disadvantages,
namely, their low-light penetration depth, collat-
eral damage outside the focal volume, the risk of
photodamage to living cells due to absorption, and
the induction of oxidative stress leading to apop-
tosis. The focused long-pulse laser beam causes
thermal damage and denaturation of the protein
molecules around the laser focus and collateral dam-
age due to heating and shockwave propagation. The
main disadvantage of using UV and visible lasers is
that the viability of the cells after laser surgery is
relatively low.

2.1. Chromosome dissection using
femtosecond nanosurgery

Femtosecond lasers can also be employed as highly
precise nanosurgical tools for tissues, cells, and
intracellular structures when using higher inten-
sities. König et al.8 first proposed nanosurgery
with femtosecond lasers in 1999. König et al.9

demonstrated the dissection of human chromosomes
by tightly focusing high repetition rate (80 MHz)
femtosecond laser pulses. Measurements with the
atomic force microscope reveal chromosome dissec-
tion with a cut size below 300 nm. In addition, the
removal of chromosome material with a precision of
110 nm was obtained (Fig. 1). The cells remained
alive and completed cell division after laser surgery.
The limited heat generation enables precise con-
trol of the modification of chromosomes, avoiding
peripheral thermal damage. The femtosecond laser
can thus provide spatially selective manipulation of
a targeted structure.

(a) (b)

Fig. 1. (a) Dissection of human chromosomes with 800 nm femtosecond laser pulses and (b) nano-ablation of Giemsa-stained
chromosomes. Reprint with permission from Ref. 9.

2.2. Femtosecond laser transfection

Femtosecond laser pulses have also been used for
efficient targeted transfection by transient opening
of the cellular membrane and the subsequent dif-
fusion of the foreign DNA into the cytoplasm.
König et al.10 demonstrated single-cell gene trans-
fection of Chinese hamster ovary cells by creat-
ing a 100-nm sized puncture in the cell membrane
that stayed open long enough to allow for enhanced
green fluorescent protein (EGFP)-tagged protein to
infuse in the cell and later be expressed. The trans-
fection effficiency was investigated using Chinese
hamster ovary cells.11 Femtosecond laser transfec-
tion is applied to canina mammary cells MTH53a12

and stem cells.13 Kohli et al. reported that exoge-
nous material has been delivered into developing
zebrafish embryos by femtosecond laser pulses.14–16

2.3. Femtosecond nanosurgery of
organelles

Femtosecond laser pulses can be employed for
nanosurgery of targeted organelles within a living
cell with high spatial resolution.8 A single organelle
(cytoskeleton, mitochondrion etc.) was completely
disrupted or dissected without disturbing surface
layers and affecting the adjacent organelles or the
viability of both plant17 and animal cells.2 Sev-
eral researchers have adopted femtosecond laser
oscillators for nanosurgery of organelles, ablation
in Drosophila embryos to induce modulation of
specific movements, and nanosurgery of structures
within yeast mitotic spindles.18–22 Figures 2(a) and
(b) show the examples of nanosurgery of a tar-
geted mitochondrion in a HeLa cell before and
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(a) (b)

Fig. 2. (a) Ablation of a single mitochondrion in a living HeLa cell. Target mitochondrion (marked by arrow) (a) before and
(b) after laser surgery using high repetition femtosecond laser pulses. The red arrowhead indicates a targeted mitochondrion.
Reprint with permission from Ref. 20.

after irradiation with femtosecond laser pulses with
a wavelength of 800 nm and a repetition rate of
76 MHz at an energy of 0.39 nJ/pulse. The vital-
ity of the cells after nanosurgery has been ascer-
tained by the exclusion of propidium iodide from
the cell as well as by the presence of cytoplas-
mic streaming.17,18 In addition, the cell undergoes
normal division.2,17,20 It has been shown that dis-
ruption and bleaching are distinguishable using flu-
orescence recovery and the restaining method.20

Amplified femtosecond laser systems with a low
repetition rate can also be used for nanosurgery.
Mazur et al.23 demonstrated the knocking-out of a
single mitochondrion in a living cell without dis-
turbing the rest of the cell on a scale of a few hun-
dred nanometers using a few nJ femtosecond laser
pulses at a repetition rate of 1 kHz. Mazur et al.24,25

also demonstrated dissection of individual actin
filament in endothelial cells and investigated the
tension in actin stress fibers in living endothelial
cells (Fig. 3).

Heisterkamp et al.26 confirmed the difference
between bleaching of the fluorophore and dis-
ruption in fixed cells after focusing femtosecond
laser pulses by transmission electron microscopy.
Watanabe et al.27,28 restained the mitochondria
with MitoTracker Red after femtosecond laser
nanosurgery of a single mitochondrion labeled with
enhanced yellow fluorescent protein (EYFP). The
mitochondria in the laser-irradiated region were
not restained after the addition of MitoTracker
Red. The results indicated that the mitochon-
dria were disrupted by the femtosecond laser irra-
diation. Femtosecond-laser-based nanosurgery of

intracellular structures without compromising the
viability of cells has potential applications in cell
biology.

2.4. Disconnection of nematode
axons in Caenorhabditis elegans

Another application of femtosecond laser nano-
surgery is to dissect neurons within living tissues
or animals. Femtosecond laser nanosurgery enables
us to directly observe the function of individual
neurons of C. elegans by severing neuronal fibers
(Fig. 4). Yanik and Ben-Yakar severed the axons
that control the crawling motion of C. elegans.29

After the laser nanosurgery, the backward crawl of
the nematode was greatly hindered. Femtosecond
laser nanosurgery can control neural regrowth and
investigate the important biochemical and genetic
pathways responsible for neuronal regeneration.
Most experiments in femtosecond laser axotomy
are performed using low-repetition rate femtosec-
ond lasers.29–31

2.5. Mechanisms for nanosurgery

Femtosecond laser surgery has been demon-
strated by the use of both low-repetition-rate
(1 kHz–250 kHz) amplified laser systems and high-
repetition-rate oscillators (∼ 80 MHz). Nanosurgery
at high-repetition rate is performed in the low-
density plasma regime at pulse energies below
the optical breakdown threshold. It is mediated
by free-electron-induced chemical decomposition
(bond breaking) in conjunction with multiphoton-
induced chemistry, and hardly related to heating

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

00
9.

02
:1

-8
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
10

/2
5/

18
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



February 11, 2009 9:57 00031 FA1

4 W. Watanabe et al.

(a) (b)

Fig. 3. Dissection of stress fibers in living cells by focusing
femtosecond laser pulses. (a) Severing and retraction of a
single stress fiber bundle in an endothelial cell expressing
EYFP-actin. Scalar bar, 10 µm. (b) Strain relaxation of a
single stress fiber bundle after a 300-nm hole was ablated
in the fiber. The white arrowhead indicates a laser ablation
point. Scale bar, 2 µm. Reprint with permission from Ref. 25.

or thermoelastic stresses.32 When the energy is
raised, accumulative heating occurs. The energy
was lower than that achieved by the amplified laser,
and therefore, many pulses are applied. By con-
trast, nanosurgery at low-repetition rate is per-
formed using more than 10-fold larger pulse energies
and relies on thermoelastically induced formation of
minute transient cavities with lifetimes <100 ns.32

For example, Watanabe et al. investigated intra-
cellular nanosurgery of a single mitochondrion
by femtosecond lasers with both low- and
high-repetition rates. They performed nanosurgery
of a mitochondrion using 250 pulses at an energy of

3 nJ/ pulse from a 1-kHz Ti: sapphire amplifier.27,28

With a Ti: sapphire oscillator at a repetition rate
of 76 MHz, intracellular nanosurgery of a mitochon-
drion was performed using 2.4 × 106 pulses at an
energy of 0.39 nJ/ pulse.20 The energy was lower
than that achieved by the amplified laser, and
therefore, many pulses were necessary at a high-
repetition rate.

3. Femtosecond Laser Photoconversion
and Photoactivation

In combination with fluorescent proteins, the appli-
cations of manipulation of sub-cellular structures
using multiphoton excitation include photoconver-
sion or photoactivation. The intracellular struc-
tures are not directly ablated and the fluorescent
properties are altered at a focal volume. Photoacti-
vation and photoconversion enables selective con-
version or activation of fluorescence signals after
optical irradiation.33–35 Most photoactivation and
photoconversion processes via one-photon excita-
tion require light in the UV region, which causes
several problems. In order to overcome these prob-
lems, there have been some reports describing the
use of femtosecond laser pulses to attempt two-
photon excitation of photoactivatable fluorescent
proteins. Problems such as low contrast and low
spatial resolution were encountered.36–39 Here, we
show spatially selective labeling of a single mito-
chondrion by using two-photon conversion of Kaede,
and tracking the dynamics of mitochondria.40,41

3.1. Labeling of an organelle by
femtosecond laser pulses

Watanabe et al.40 showed spatially selective label-
ing of a single mitochondrion by using two-photon
conversion of Kaede, and tracking the dynamics of
mitochondria. Tobacco BY-2 cells whose mitochon-
dria were labeled with photoconvertible fluorescent
proteins, Kaede, was used. In order to alter fluo-
rescence spectrum, femtosecond laser pulses with
a wavelength of 750 nm and a repetition rate of
76 MHz were focused at the targeted mitochondrion
indicated by the arrow through an oil-immersion
objective lens (NA 1.4). After photoconversion of
the mitochondrion, time-lapse images of the green
and red fluorescence using a one-photon fluores-
cence microscope were obtained (Fig. 5). A volume
of the mitochondrion of approximately 1 femtoliter
(= 1.0µm × π × (0.5 µm)2) was photoconverted
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before after 6 hr 12 hr 24 hr

before after 6 hr 12 hr 24 hr

Fig. 4. Femtosecond laser axotomy in Caenorhabditis elegans worms using femtosecond laser pulses. Fluorescence images of
axons labeled with green fluorescent protein before, after. The yellow arrows indicate laser ablation points. Scale bar, 5 µm.
Courtesy of Yanik, M. F.

around the focal point. Two-photon photoconver-
sion by the femtosecond laser irradiation enables us
to perform site-specific labeling of a single organelle
in 3-dimensional space.

Labeling technique can be used to monitor
the dynamic behavior of an organelle. By observ-
ing time-lapse photoconverted red fluorescence of
Kaede after photoconversion allowed tracking of the

Fig. 5. Selective photoconversion of mitochondria with Kaede in a fixed BY-2 cell. A single mitochondrion was photoconverted
from green to red by 750-nm femtosecond laser pulses. A target mitochondrion is indicated by yellow arrowheads. Scale bar:
10 µm. Reprint with permission from Ref. 40.

movement of the target mitochondrion. The tech-
nique has potential application in direct tracking of
selective cellular and intracellular structures.

4. Outlook and Conclusions

We have reviewed recent advances in the manipu-
lation of intracellular organelles using femtosecond
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laser pulses. The manipulation techniques encom-
pass site-specific photoconversion and nanosurgery
of intracellular organelles. Femtosecond lasers can
manipulate targeted cells and intracellular objects
without using genetic methods or chemical agents
used in conventional molecular and biochemical
techniques.

The application of sub-20 fs has been used for
nanosurgery of living cells.13,16,42,43 König et al.13

have demonstrated the efficient optical transfec-
tion of stem cells by sub-20 fs laser microscopy by
dispersive-mirror compressors. The management of
pulse duration and pulse shape will be an important
topic for precise nanosurgery.

Femtosecond lasers can be used to stimulate
chemical reactions44 in a target cell without using
chemical agents. In addition, chromophore-assisted
laser inactivation (CALI) using multiphoton
excitation confirmed to be an effective chromophore
for inactivation of a protein’s function without non-
specific photodamage in living mammalian cells.45

The next-generation femtosecond nanosurgery
is plasmonic nanosurgery, which performs nano-
surgery with higher resolution. Local field
enhancement in the near-field of metal nanopar-
ticles irradiated with laser pulses is a promis-
ing technique.46–48 Femtosecond laser nanosurgery
becomes a versatile tool for regeneration study
in combination of microfluidic chips.49,50 Yanik
demonstrated a method for non-invasive and high-
throughput on-chip immobilization of physiologi-
cally active C. elegans with a femtosecond laser
oscillator.51

Femtosecond lasers can also be used to mod-
ify the structure of biological tissues. There
have been reports on the applications of fem-
tosecond laser nanosurgery to ocular refractive
surgery52–54 and vessels in living animals.55 Fem-
tosecond laser manipulation can be employed as a
highly precise manipulating and nanosurgical tool
for tissues, cells, and intracellular compartments
without collateral damage, and will be a versa-
tile and feasible tool in cell biology and clinical
applications.
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